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We report the generalized spatial discretization of the Kardar-Parisi-Zhang �KPZ� equation in 1+1 dimen-
sions. We solve exactly the steady state probability density function for the discrete heights of the interface, for
any discretization scheme. We show that the discretization prescription is a consequence of each particular
model. We derive the discretization prescription of the KPZ equation for the ballistic deposition model.
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The interface growth model has attracted much attention
during the two last decades due to its widespread application
to many systems �1–3�, such as film growth by vapor or
chemical deposition, bacterial growth, evolution of forest fire
fronts, etc. For such systems, the major effort has been con-
centrated in the identification of the scaling regimes and their
classification into universality classes through Monte Carlo
simulation of the discrete models. Another powerful tool to
characterize the scaling regimes is the renormalization-group
analysis of the continuous equations in the hydrodynamic
limit. These tools allow us to make a correspondence be-
tween the discrete models and the continuous equations. A
useful method to make this connection is to derive continu-
ous evolution equations from the transition rules of the dis-
crete growth models based on a regularizing scheme and
coarse graining of the discrete Langevin equations �4–6�.
Phenomenological equations, selected according to symme-
try principles and conservation laws, are often able to repro-
duce many experimental data. A widely studied phenomeno-
logical equation representing the irreversible growth of such
interfaces is the Kardar-Parisi-Zhang �KPZ� equation �7�.
The KPZ equation is also related to the Burgers equation of
turbulence and to directed polymers in random media �2�.
The KPZ describes the evolution of the profile h�x , t� of the
interface at position x and time t
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where � and � are the diffusion and nonlinear coefficients,
respectively. The Gaussian thermal noise ��x , t� has zero
mean and covariance

���x,t���x�,t��� = 2 � ��x − x����t − t�� , �2�

where � is the strength of the noise. Here and elsewhere � �
denotes the average over noise realizations. The KPZ equa-
tion differs from the Edwards-Wilkinson �EW� equation �8�
in the nonlinear term due to microscopic lateral growth. The
later equation is succesful in describing interfaces growing
under the effect of random deposition and surface tension. A
powerful and simple tool to compute the exponents that char-
acterize the universality class of a given continuous equation
is the numerical integration �9–12�. The KPZ was integrated
using a peculiar discretization method with exact steady state

probability density function �13�, a pseudospectral discreti-
zation method �14�, and a least-square error method from
experimental data �15�. The most common method is the
direct numerical integration that was used in various models
of growth �9–13� although their theoretical justification is not
clear.

The main goal of this Brief Report is to introduce a gen-
eralized spatial discretization of the KPZ equation in 1+1
dimensions, i.e., a discrete Langevin equation for the local
interface height. We find the steady state probability density
function of the discrete interface heights for all discretization
prescription. Finally, we establish the discretization prescrip-
tion associated to the KPZ equation for the ballistic model
and show that the Langevin equation with a nonlinear lateral
growth term, obtained via regularization of the transition
rules of the discrete models, depends on the discretization of
the nonlinearity.

Generalized discretization. We propose the following
Langevin equations as a general spatial discretization of the
KPZ equation:

dhi

dt
= � Li +

�

2
Ni

��� + �i�t� , �3�

where hi�t�=h�ia , t� is the interface height at the site i of the
lattice �i=1,… ,N�, a is the horizontal lattice spacing, and
L=a N is the lateral lattice size. Periodic boundary condi-
tions are assumed, i.e., h0	hN. Without loss of generality we
take the horizontal and vertical lattice spacing to be equal.
Introducing the addimensional difference of heights

Hi+k
i+� =

1

a
�hi+� − hi+k� , �4�

where � ,k=−1,0 ,1 ���k�, the standard discretized diffu-
sive term of Eq. �3� is given by

Li =
1

a
�Hi

i+1 − Hi−1
i � . �5�

Our discretized nonlinear term �with 0���1� in Eq. �3� is
defined as
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The noise �i has zero mean and covariance

��i�t�� j�t��� =
2 �

a
�ij��t − t�� . �7�

Expanding Eq. �5� and Eq. �6� around the ith site, the dis-
cretized diffusive term and the nonlinear term in the � dis-
cretization are given by
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1
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�x4a2 + O�a4��
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, �8�
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,

respectively. Different discretizations will produce unequal
results in the roughness even though the difference in the
numerical accuracy of the height profile is small �13�. Most
numerical studies are done with the discrete spatial version
of the KPZ equation corresponding to the usual choice �
=1 �see Eq. �6�� called standard or post-point discretization.
The nonlinear term Ni

�1�= 1
4 �Hi−1

i+1�2 only depends on the height
of the nearest-neighbor sites and thus the error in approxi-
mating �2h /�x2 is minimized �see Eq. �8��. Oppositely, the
choice �=0, called antistandard or prepoint discretization,
corresponds to the arithmetic mean of the squared slopes
around any interface site. On the other hand, Lam and Shin
�13� introduced the spatial discretization corresponding to
the choice �=1/2 that enables an elegant analytical treat-
ment. However, this choice is unusual and is only supported
by the existence of a steady state probability density function
equal to the one obtained for the linear case ��=0�. Below
we explain this special choice and we also show, through a
general calculus of the steady state solution, that the gener-
alized discretization has an unambiguous limit in the con-
tinuous independent of the � value.

Steady state density. The main feature of the generalized
discretization of the KPZ equation is that there is a steady

state probability density function P̃�h� of the discrete heights
h	
hi�. This function gives rise to the known steady state

probability density functional P̃�h� of the continuous inter-
face height h�x , t� related to the KPZ equation �2�. Con-

versely, P̃�h� cannot be derived from P̃�h� as we show be-
low. The probability density function P�h , t� evolves
according to the following Fokker-Planck equation
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where Ji
����h , t� is the probability density current. Replacing

in Eq. �9�

P̃�h� = exp�−
�

�
�
i=1

N

aUi
���� , �10�

where Ui
��� is a “potential” function to be derived below, we

obtain the steady state probability density current

J̃i
����h� = �� Li +

�

2
Ni

��� + �
�Ui

���

�hi
�P̃ . �11�

Lam and Shin �13� showed that P̃�h� for the linear case ��
=0� is also solution of the nonlinear one in the midpoint
discretization. We explain their result setting Ui

���=Ni
�0� in

Eq. �11�, i.e., the solution corresponding to �=0. It is easy to
show that, under periodic boundary conditions, the current

J̃i
���= �� /2�Ni

���P̃ is conserved only if �=1/2 for ��0 �i.e.,

�i=1
N � J̃i

�1/2� /�hi=0�. Our goal is to find a steady state solution,
independent of the choice of the discretization and therefore
for any value of the nonlinear coefficient �, with constant

current J̃i
����h�. Using Eq. �5� and Eq. �6� it is easy to show

that

Ni
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�1/2� +
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dhi
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2
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1 + �
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Replacing Eqs. �12� in Eq. �11� we get

Ui
��� = Ni

�0� + � Li
3, �13�

where

� =
�

72 �
�1 − 2�

1 + �
�a4.

Equation �13� gives a steady state solution of the Fokker-
Planck equation �Eq. �10�� with conserved current

J̃i
��� 	 J̃i

�1/2� =
�

2
Ni

�1/2�P̃ .

A dimensional analysis shows that � /� and � /� are propor-
tional to a, and therefore � is proportional to a3. Moreover,
notice from Eq. �8� that the errors of Ni

��� and Li in approxi-
mating ��h /�x�2 and �2h /�x2, respectively, are at most pro-
portional to a2. Thus, we conclude that the error of Ui

��� in
approximating ��h /�x�2 is proportional to a2 �see Eq. �13��.
The midpoint solution Ui

�1/2�=Ni
�0� is symmetric under the

interchange Hi
i+1↔Hi−1

i , but the term �Li
3 breaks weakly the

symmetry of Eq. �13�. Notice that the limits �=0 �EW equa-
tion�, �=1/2 �midpoint discretization�, and a=0 �coarse-
grained approximation� are equivalent between them.

If we denote by P��h� , t� the probability density functional
of h�x , t� in 1+1 dimensions, the corresponding Fokker-
Planck equation is
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from which we can obtain the well-known steady state solu-
tion

P̃�h� = exp�−
�

�



0

L

dx� �h

�x
�2� .

This steady state probability density is precisely the solution
in absence of nonlinearities. Moreover,

J̃�h� =
�

2
� �h

�x
�2

P̃ = const

for the nonlinear case. A special feature of our discretization

is that P̃�h� is a steady state solution for all the values of �.

While the nonlinear coefficient is present in P̃�h�, it is absent

in P̃�h�, because lima→0�i=1
N a Ui

���=�0
L��h /�x�2dx. Thus the

coarse-grained approximation wipes out our knowledge on
the discrete model and the nonlinearity. Again, for any dis-
cretization, the coarse-grained approximation preserves the
dominant nonlinear term of the steady state current, since

lima→0J̃i
���= J̃�h�.

Ballistic deposition model. The KPZ equation can be
solved by direct numerical integration when we specify its
associate spatial discretization. In order to verify this fact, we
derive the Langevin equation �Eq. �3�� for the ballistic depo-
sition �BD� model. The procedure used here is based on
regularizing the step functions included in the growth rules
of the microscopic model, in order to obtain the discrete
Langevin equation and, after coarse graining, the KPZ equa-
tion. Let us first introduce the general treatment. In an aver-
age time interval 	, the discrete interface height at the site i
increase in hi�t+	�−hi�t�=a� j=1

m ri
�j�, where ri

�j� are the rules
of the deposition processes. Expanding hi�t+	� up to second
order in the Taylor series around 	, we obtain hi�t+	�
−hi�t��	 dhi /dt. Thus, the evolution of the height on the site
i is given by the Langevin equation

dhi

dt
= Ki

�1� + �i�t� , �14�

where the Gaussian thermal noise �i has zero mean and co-
variance

��i�t�� j�t��� = Kij
�2���t − t�� . �15�

The first and second moments of the transition rate, in terms
of the growth rules, are given by

Ki
�1� =

a

	
�
j=1

m

ri
�j�, Kij

�2� = a �ijK1
�1�, �16�

respectively. In the BD model, a particle is released from a
randomly chosen lattice position i above the interface, lo-
cated at a distance larger than the maximum height of the

interface. The incident particle follows a vertical straight tra-
jectory and sticks to the interface at time t. The height in the
column i is increased by max�hi−1 ,hi+1,hi+1�. For this
model the rules can be summarized as

ri
�1� = 
�Hi+1

i �
�Hi−1
i � ,
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�2� = Hi

i+1�1 − 
�Hi+1
i ���1 − 
�Hi+1

i−1�� ,

�17�
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i ���1 − 
�Hi−1
i+1�� ,
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�4� =

1

2
��Hi−1

i+1,0�
Hi
i+1�1 − 
�Hi+1

i �� + Hi
i−1�1 − 
�Hi−1

i ��� ,

where 
�z� is the unit step function defined as 
�z�=1 for
z�0 and 
�z�=0 for z�0, and ��z ,0�=
�z�+
�−z�−1 is
the Kronecker delta. The representation of the step function
can be expanded as 
�z���k=0


 ckz
k providing that z is

smooth. In any discrete model there is in principle an infinite
number of nonlinearities, but at long wavelengths the higher
order derivatives can be neglected using scaling arguments,
since one expects affine interfaces over a long range of
scales, and then one is usually concerned with the form of
the relevant terms. Thus, keeping the expansion of the step
function to the first order in its argument and replacing the
expansion in Eq. �17� and Eq. �16�, the first moment is

Ki
�1� = v0 + � Li +

�

2
Ni

���, �18�

where

v0 = c0
2a

	
,

� = �1 − c0 − 2c0c1�
a2

	
,

� = 2 c1�5 − 4c0 − c1�
a

	
,

� =
1

2
+

1 − 2�c0 + c1�
2�3 − 2 c0�

. �19�

The driving velocity v0 can be subtracted in the expression
of the first moment given by Eq. �18�, choosing adequately a
moving reference frame. Retaining only the constant term in
Eq. �18� we obtain Kij

�2��a �ijv0=� �ij /a. Replacing in Eq.
�15� we recover Eq. �7� with noise strength �=a2v0. Notice
that in order to define the KPZ coefficients and the parameter
� �see Eq. �19��, we need a continuous representation of the

 function �such as the shifted hyperbolic tangent represen-
tation �16�� to compute the coefficients c0 and c1 of this
expansion. For a given �, the KPZ coefficients � ,�, and �
depend only on one of the microscopic parameters, e.g., for
�=1/2 the coefficients c0 and c1 are related by c0+c1=1/2.

The extension of the discretization prescription to n+1
dimensions is direct. Nevertheless, to clarify, notice that
��h�2=�i=1

n ��h /�xi�2, where xi are the coordinates �i
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=1,… ,n�. The extension is direct since Eq. �6� is related to
each one of the nonlinear terms of the previous sum. Thus,
the generalized discretization depends on n parameters �i,
one by each coordinate.

In summary, we propose a finite difference discretization
criterion for the numerical integration of the KPZ growth
equation starting from the corresponding generalized discrete
Langevin equation. We show that, for any discretization
scheme, there is a steady state probability density function of
the discrete interface heights. Besides, we derive the KPZ
coefficients for the BD model as an example of our general-
ized discretization. We remark that all the discretization pre-

scriptions are equivalent in the sense that the same continu-
ous equation is obtained. Nevertheless, the numerical
convergence of equivalent discretizations to the continuous
is a pending task that goes beyond the aim of this paper.
Finally, our results can be used as a tool for the direct nu-
merical integration of growth continuous equations with non-
linear terms such as the KPZ one.
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